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An invariant submodel of ideal gas dynamics is investigated within the framework of the PODMODELI program. This submodel 
is constructed in a two-dimensional subalgebra, consisting of a Galilean transport operator and the sum of the transport and 
rotation operators. An original group property of the submodel is found: the permitted algebra is wider than the normalizer 
factor of the subalgebra being considered. A group classification of the submodel is carried out. A physical interpretation of the 
invariant solution is given. A number of exact solutions are considered: a self-similar solution and solution with a linear stream 
function. The conditions for the solution to be analytic on the axis of symmetry of the motion are derived. 0 2002 Elsevier Science 
Ltd. All rights reserved. 

1. THE EQUATIONS OF THE SUBMODEL 

The equations of gas dynamics are considered in cylindrical coordinates t, x, r, 0; U is the projection of 
the velocity onto the x axis, V is the radial projection of the velocity and W is the peripheral velocity. 
An invariant solution is constructed using the two-dimensional subalgebra L2 which is specified by the 
basis of operators ti$ + 8, (the Galilean transport operator) and a, + 3, (the sum of the transport 
and rotation operators). The subalgebra is taken from the optimal system of subalgebras of the 
11-dimensional Lie algebra L 11, which is permitted by the gas dynamics equations with an arbitrary 
equation of state (see [l, Table 6, N 2.101). Calculation of the invariants of the subalgebra gives a 
representation of the invariant solution 

u = t-‘(x - 6) + U(I, r), v = u(t, r), W = w(t, r), p = p(t, 4, p = p(r, 4 (1.1) 

Substitution of this representation of solution (1.1) into the gas dynamics equations gives the equations 
of the submodel 

ut + uu r + p-ip r = r-lw2 

u, + uv,= t-‘(r-lw - v) 

W( + uw, = -r-‘uw 

pr + up, + pu, = -p(r’ + +u) 

it + up, + Au, = -A(r’ + r-lu); A = pc2 

(1.2) 

where c2 = df/ap is the square of the velocity of sound, p = f(p, S) is the equation of state, U, u and w 
are the invariant velocities, p is the density andp is the pressure. 

The equation for the entropy S follows from system (1.2) 

St + us, = 0 (1.3) 

The second equation of system (1.2) is separated from the system. It can be solved separately as a 
linear equation after the solution of the remaining equations has been found. 

The twist integral 

rw = x(S) (1.4) 

where x is an arbitrary function, follows from the third equation of system (1.2) and Eq. (1.3). 
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Hence the equations of the submodel can be written as a system of three equations: entropy equation 
(1.3) and the two further equations 

10 + 4 + P-‘(f&r +fssr) = +x*(s)* (W)r + Wr,) = 0 (1.5) 

The second equation of (1.5) becomes an identity after introducing the stream function w: prr = 
w(\II)\II,, uptr = -co(~JJ)~~J~, where w is an arbitrary non-zero function. The entropy integral 

follows from Eq. (1.3). 

5 = W) (1.6) 

The first equation of (1.5) remains. After substituting the integrals this equation becomes a second- 
order quasilinear hyperbolic equation for the stream function 

w,‘w,t - 2\Y,v,y,, + (yf - c*l&lj/, = l&jyo-‘rr - c2r-’ - X2r-3) + w;c*~‘~-’ (l-7) 

2. GROUP CLASSIFICATION 

System (1.2) contains the arbitrary function&p). The question of the extension of a permitted algebra 
in the case of special functionsA is fundamental in group analysis [2]. The equivalence transforms are 
as follows: 

r’=u,r, u’ = qu, w’=alw* ff=a2p, P’=a*a:(p+a3), A’=a2~;A 

The transformations of the invariant variables are not written out here. 
The kernel of the permitted algebras is defined by the operators. 

2 = fa, + ra, -va, , 2, = A(s 

where h(S) is an arbitrary function. The normalizer factor of the subalgebra L2 in the algebra Lll is 
univariate and is specified by the operator Zi = f’a,. The appearance of the infinite Abelian ideal Zh 
in the kernel is explained by the fact that the linear equation for v is separated out from system (1.2). 
The appearance of the dilatation operator Z is a rare exception in the case of invariant submodels for 
which, as a rule, only the normalizer factor is permitted. 

The result of the group classification of system (1.2) is shown in Table 1, where iV is the dilatation 
number from [l, Table 11. A kernel occurs in all Lie algebras. The last line corresponds to the extension 
for the new function4 which is not in [l, Table 11. The following operator notation, which is encountered 
in the table, is introduced 

Y&~ = pa+3, + 9cp)a,. K = 4 + Ua, + wa, - 2pa, 

v2 = t*a, + td, + (r - tu)au - td” - twa, - 3tpa, - 5tpa, 

y3 = a, -t-$au +pa, +pa,) 

The group classification of (1.3), (1.5) must be carried out using two arbitrary elements f and x. It 
differs from that in Table 1 and is rather extensive to be presented in a paper in a journal. An exhaustive 
list of extensions has been given earlier.? 

The group classification of Eq. (1.7) with three arbitrary elementsf, x and o has not been performed. 

3. CHARACTERISTICS AND EQUATIONS 
OF STRONG DISCONTINUITIES 

The equations of the submodel (1.5) (1.3) can be written in the symmetric hyperbolic form 

tMUSTAYEV A. E, Submodels of helical Galilean-invariant flows in gas dynamics. Preprint No. 137, Inst. Mekh. Urai’sk 
Nauch. l3entra Ross. Akad. Nauk, Ufa, 1999. 
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Table 1 

A 

PfcpP-Y) 

fcp> 

PAPI 

YP 

5/3P 

fw? 

f(P) 

YPY 

P 

I 

0 

P 

Extending operators 

(Y-WI +2yYp* 

YI 

v, +2Yp’ 

$7 v, 

$9 Y, 

v, -25’ 

v,* 

q*. (y-l)r, +2yY,* 

$9 r,* 

Y, , v,‘ 

v,- Y;w, 

Yp*. Y,, Y, 

put + puu, + p, = px2(S)rw3, bp, + bup, + u, = --t-’ - ur-’ 

(b = pe1cm2, p = g(p, S) is the equation of state and cm2 = g ). 
The system has three characteristics. The characteristic f&m of system (3.1), (1.3) is [3] 

Co$=u, D,S=S,+uS,.=O 

C+ : 9 = u f c, pcD,u + D,p = cpx2rm3 + pc’(t-’ + ur-’ ) 

(D, = 2, + (u f c@,) 

(3.1) 

The invariant strong discontinuity r = r,,(t) satisfies the following equations [3] contact discontinuity 

ui = r+, i=l,2; [p]=p2-p1=0 

shock wave 

[u] = [w] = 0 

(u2 - riJ2 = p2p;‘[pl[pl-‘, (u, - ro’j2 = P,Pi’bl[Pl-’ 

E(Pz, PZ)-E(P,t Pl,+;cP;’ -P;‘)(PrP,)=o 

The subscripts i = 1,2 indicate the values of quantities on the different sides of the discontinuity, and 
E = ~(p,p) is the equation of state relating the energy, the density and the pressure. 

4. PHYSICAL INTERPRETATION OF THE INVARIANT SOLUTION 

A physical solution in accordance with formulae (1.1) corresponds to each continuous solution of system 
(1.2) in the domain SL belonging to one quarter of the plane t 5 to, r 3 0. A cylinder r = rl in the physical 
space R3(x, r, 0) corresponds to each point (ti, ri) E Sz. Invariant functions take fixed values at this point. 
It follows from formulae (1.1) that V, W, p andp are constants on the cylinder and that the function 
U is only constant on the spiral lines x = 8 + C, C = const and cannot be continuous ever the whole 
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of the cylinder (actually, if the constant C is changed to C + Zn, the same spiral line is obtained and 
the function U takes an increment of 2&). Thus, the physical solution, specified on the cylinders, has 
a strong discontinuity of the function Uwhich cannot be invariant. Sincep and p are continuous at this 
discontinuity, this is either a contact discontinuity or a wall. 

Suppose the discontinuity surface is defined by the equation F(t, x, r, (3) = 0 with a normal 
n = VF/ [ VF ] and a velocity of motion 0, = -FI 1 VF I. The conditions on the contact discontinuity are: 
uni = D,, [p] = 0 where the subscripts i = 1,2 denote the side of the discontinuity. The equations for 
the surface 

F, = 0, F, + uF, + r-‘wFe = 0 

follow from this, and the solution of these equations is written in the form 

(4.1) 

where I@, r) = C is the integral of the equation drldt = u, r = .I(& C) is the inverse of the function I 
and cp is an arbitrary function. 

The world lines of the particles along both sides of the contact discontinuity lie in the moving surface 
(4.1). Actually, the world line of the particle on one side of the discontinuity satisfies the following 
equations, obtained from formulae (1.1) 

ak x-e 
- = - +u (t, r), 

dr 
dt t 

x = a, r), r$ = w(t, r) (4.2) 

with the initial conditions 

x I,=,, = X0? r=l,=,,=ro, 0 I,=,, = &I (4.3) 

The world line of a particle on the other side of the discontinuity satisfies equations which 
are analogous to (4.2) where 8 must be replaced by 8 + 2n in the first equation. The initial conditions 
for 8 in (4.3) can be taken in the form 8],=!, = e. - 27~. The substitution x - 2n = X leads to the 
first world line. Thus, the second world line is obtained from the first either by shifting x by -27t or 
by rotation around the x axis by an angle of 271. It follows from this that both world lines lie in the 
surface (4.1). 

5. SELF-SIMILAR SOLUTION OF THE SUBMODEL 

The submodel (1.2) allows of an expansion Z = td, - L& which does not enter into the normalizer 
factor. The self-similar solution of a submodel, constructed using Z, cannot therefore be obtained as 
an invariant solution with respect to some subalgebra from the optimal system for the gas dynamic 
equations [l, Table 61. We will now consider this in more detail. For the time being, we will not consider 
the equation for vwhich has been separated out. The invariants of Z give a representation of the self- 
similar solution 

u = u(s), w = w(s), P = p(s), p = p(s); s = S(s); s = rt-I (5.1) 

Substitution of expressions (5.1) into (1.2) and (1.3) leads to a system of ordinary differential equations 

S’= 0 j S(p, p) =Sa is the entropy integral @ =flp, So)) 

(u - s)u’+fpp-‘p’= r*w* 

(u - s)w’= -s-‘uw (5.2) 

(u-s)p’+pu’+p(l +r’u)=O 

p(u -s) = Cs2w3, C = const (5.3) 

If u = s + Cs2w3p-’ is substituted into system (5.2), two equations are obtained for determining w 
and p 
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t 
SW+ P -+I=0 

W CSW3 

(p2fp - C2s4w6)sp’ = w2p(p2 + 2cpssw + C2s4w4) (5.4) 

The function w(s) can be specified. The function p(s) is then determined from the first equation, and 
the second equation parametrically defines the function&(p). Hence, in the case of an arbitrary rotation, 
the equation of state can be chosen such that the solution is given by finite formulae. The exact solution 
can be determined in this way. 

For example, when w = wOsk, k f -1, the quantities 

p = (C;‘S)~‘+‘, q’-” = -(k + l)Cw;, 
k 

u = -3 
k+l 

f(p) = C;“wo’@k + 1)-‘p’+2kN3k+‘) + 
kc; 

3(k+l)3p 
‘+2’(3k+‘) + c2 

c* = COnSt 

are determined from relations (5.3) and (5.4) 

6. SOLUTIONS WITH A LINEAR STREAM FUNCTION 

As in the case of the one-dimensional motions of a polytropic gas [4, p. 3121, we will seek the stream 
function of Eq. (1.7) in the form of a homogeneous linear function of the variable r 

v 2, f=w9PY 

Substitutive expressions (6.1) into Eq. (1.7) we obtain the relation 

tY-‘a*Y-‘a*t + ,,,-Yo7-‘4 + y~(o-‘wl _ ,,,-I )I= X*W-4t7-‘a*7-4 

Separation of the variables t and w leads to the determination of the functions 

1 
‘NY-‘) 

x=c,yt*, 

The differential equation 

a ” = C*a-3 
I 

_ c2$-Ya’-27 , C,. C,, C3 =const (6.3) 

(6-l) 

(6.2) 

is obtained for the function a(t). 
If C2 = 0, the solution of Eq. (6.3) is 

a=ao(l+a~C~(t-to)2)X 9 a03 to = const 

The quantity a(t) increases hyperbolically asymptotically approaching the straight line a@ = CI(t - to) 
when t + =. Note that the function a(t) determines the law of motion of a particle r = v&t) along 
the streamline v = vo. 

Positive solutions of Eq. (6.3) when C2 f 0 for large values oft may have an oscillatory form for 
certain values of the constants C’ and C2. 

We will now consider, as an example, the integrable case when y = %. The substitution a = t%(t) leads to a 
solution which is expressed in terms of the elliptic integral 

In ’ 
Ii 4 

=*j 
bdb 

‘0 b4 +C,b* +8C2b-4C; 
, bo,ro,C,,C2,C4 =const 

h 

In the phase plane (6, c), c = b,, s = In r, Eq. (6.3) 

(6.4) 



832 A. E Mustayev and S. V Khabirov 

dc b4 -4C2b+4C; 

db= 4cb3 

has only two real singular points (6,) 0), (b2, 0) and, moreover, 

b,,, = +I +(-I -8C,D-3)K], D6 = 16(C; +CfD’) 

The constants Ci, C, can be chosen such that bl > b2 > 0. Then, the first singular point is the centre and the 
second singular point is a saddle point. So, solution (6.4) has an oscillatory form in the neighbourhood of the point 
(bi, 0). 

7. THE HELICAL MOTION OF A GAS 

We will consider a certain invariant solution of the submodel (1.3) (1.5) using the classification proposed 
by the first of the authors (see the paper cited in the footnote). In the case of a polytropic gasp = 
Spy, the system of equations (1.3), (1.5) allows of an extension (1 - y)(2t& + r& - &I,) + 2~4,. The 
representation of the invariant solution is 

u = &4,(S), p = PY)p,(,), S = S(s), .Y=Tt -x 

The invariant functions satisfy the system of ordinary differential equations 

( 1 u,-is s’=o 

(+ -gp, j +ssp, =. (7.1) 

u,u; -+J+ysp~-*p; +p+‘= x2(S).F3 

System (7.1) is integrated for y = 34. There are two types of solutions: the non-isentropic case 

I 
u, =-s, 

2 
p1 =;s-g j s(s)-% 

I ( 50 

$s+s-3&s(s)) ds * 11 
where S = S(s) is an arbitrary function and so is a constant, and the isentropic case 

s=s,, u,=l ~s+c,(sp,)-‘, 

S*P, (COP, - 6S,# 
1 

-c,>=c: +-44,p: 
2 

where So > 0,440 > 0 and CO, Cr are constants. 
The non-isentropic case leads to the following physical solution (1.1) 

U = r-‘(~-(9+/r(s))+ r*X(S(s)>ln t 

v = .! rt-1 
2 ’ 

w = F’X(S(S)) 

* p+-*s-K 
[ ( j S(q)-H 
SO 

$s, +s;3x2(s(qH 4 ) 1 

(7.2) 

s = S(s), p = sp% 

where h(s), S(s), x(S) are arbitrary functions. 
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Suppose x@(s)) = ks* and k is a constant. Then, the physical velocities are expressed using the formulae 

(/=r-‘(x-e+kInt+h(s)), V=+rt-I, w = krr-’ 

The world line of a particle which passes through the point (x0, ro, 0,) at the instant of time t, = 1 is 
determined from (4.2) and (4.3) 

x=x,r+(t-l)(/ra-8,), r=rotK, O=kInt+8,, h,=h(r,) 

The projection of the world line onto the space R3(x, r, 0) is a trajectory which lies on the parabola 

x = (x0 + ho - f&)(r/ro)* + e. - ho 

The projection of the trajectory onto the plane x = const. is the spiral 

e-e, 
r=roexp 2k 

We fix x0, O. and change r,. The vertex of the paraboloid lies on the x axis at the point e. - h(r,). 
On reducing ro, the paraboloid contracts to the x axis. Trajectories passing through the half-line 

X0 = const, e. = const, 0 s r. < 00 form a helical tapering surface. This surface can be a contact 
discontinuity or a wall and constrains the continuous physical motion of the gas. 

The isentropic case describes an outflow from a three-dimensional expanding twisted source. 
In fact, the function Pr(s) > 0 is defined by the implicit formula (7.2) for s > so > 0 when 

MO > 0, Ci f 0. For Ct > 0 and a sufficiently large value of the constant Co > 0, the expression 

COP, - ~S,P? - C, = g(p,) 

has two zeros when p1 = pll, p12, 0 < pll < p12. It follows from (7.2) that pt(s) is a two-valued bounded 
monotonic function which takes values between pll and p12. If Ct < 0, the function g(p,) has one zero 
when pi = p12 > 0, and it follows from relations (7.2) that pt(s) is a two-valued monotonic function 
which takes values between zero and plz. So, for each value of the constants (apart from Ct > 0 and 
Co < 0), there are two outflows from a cylindrical twisted source which expand as r = so&. In the flow 
domain, there is a helical contact discontinuity or a wall. 

8. ANALYTIC SOLUTION WITHOUT SINGULARITIES ON THE AXIS 

In the case of an analytic equation of state p = g(p, S), an analytic solution in the neighbourhood of 
the axis r = 0 can be considered. The physical conditions for solution (1.1) to have no singularities are 
as follows: 

u(t, 0) = w(t, 0) = 0 

The solution of system (1.2) is sought in the form of a power series in r. Comparison of the powers 
in Eq. (1.2) gives the following representation of the solution 

u = rCukrk, w=rCwkrk, p=Cpkrk 

p=P+r2zpkrk, s=cO+rzSkrk (8.1) 

where uk, i@k, Pk,pk, Sk and P are fUnCtiOnS Of the variable t, Co and the summation iS carried OUt over 
integral, non-negative values of k. 

When r = 0, quantities with the zero subscript 

p. = g(P, Co>, or p =f(Po* Co) 

‘40 = -$r-l +p;‘p;), wg = c,rpo, 

So = C2(tPo)% p. =~p0(w&4&& 

(8.2) 
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where Cr, C, are arbitrary constants and P(t) is an arbitrary constant, are determined from system (1.2) 
and the equation of state. 

Substituting the representation of the solution in the form of (8.1) into system (1.2) and into the 
equation of state and comparing the coefficients of rk we obtain equations for determining quantities 
with subscript k 

pou; + (k + 2)UOPOUk - 2p,w,w, + (a; + 4 - wo2 )Pk + (k + 2)P, = &k 

wi + 2w& + (k +2&w, = &k 

o; + (k + 2&& + ((k + 2)u, +t-‘)Pk = g3k 

s, + &-,Uk + u,,sk = g,,k 

Pk =&k 

(8.3) 

The quantities gik are expressed in terms of quantities with subscripts which are smaller then k. We 
determine ok from the last equation of (8.3), and uk and pk are determined from the third and first 
equations of (8.3), respectively. The remaining two equations are linear inhomogeneous equations for 
determining wk and Sk, the solution of which has the form 

wk = (roO) ‘+k’Z(&(f)+ &+I )v Sk = (&#(G,(r)+ C2k+2) 

where Cuc+r, C2k+z are constants and Fk(t), Gk(t) are certain functions. 
Thus solution (8.1) is determined, apart from an arbitrary function P(t) and an infinite number of 

constants Co, CT, C2 . . . 
The convergence of the series (8.1) can be proved by the method of majorants in the small. The 

constant arbitrariness can then be specified by two arbitrary functions a(s), v(r): 

w = iiT(& r) + rj.l(f)o(~(t)), s = cc + S(r, r) + rp(t)v(r) (8.4) 

where W, 3, p are certain fixed functions. Consequently, the asymptotic behaviour of the functions w 
and S as r + 0, compatible with (8.4), can be specified by the functions CT and v as boundary conditions. 
Moreover, it is possible to specify the pressure P(t) on the axis r = 0. The entropy is determined, apart 
from a constant term and the constant C, is therefore not essential. 
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